从源码看ONNXRuntime的执行流程

首页 / 新闻资讯 / 正文

First Vector Graphic

前言

在上一篇博客中:【推理引擎】ONNXRuntime 的架构设计,主要从文档上对ONNXRuntime的执行流程进行了梳理,但是想要深入理解,还需从源码角度进行分析。

本文以目标检测模型NanoDet作为分析的基础,部分代码主要参考:超轻量级NanoDet MNN/TNN/NCNN/ONNXRuntime C++工程记录 - DefTruth的文章 - 知乎,在此表示感谢!

准备工作

OrtHandlerBase 是用来操控 ONNXRuntime 的基类,各种网络模型都可以通过继承该类进而拥有 ONNXRuntime 的使用权限,比如NanoDet;同时,NanoDet还可以扩展独属于自己的方法和成员变量,以方便推理前后的预处理和后处理工作。
从源码看ONNXRuntime的执行流程

构造NanoDet对象时,会自动调用OrtHandlerBase的构造方法,在构造方法内部会首先初始化一些必要的成员变量(Ort::EnvOrt::SessionOptions),这两个变量主要用于初始化Ort::Session:

ort_env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, log_id);  Ort::SessionOptions session_options; session_options.SetIntraOpNumThreads(num_threads); session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); session_options.SetLogSeverityLevel(4);  ort_session = new Ort::Session(ort_env, onnx_model_path, session_options);

构造 InferenceSession 对象 & 初始化

在构造Ort::Session 对象的过程中,会调用ONNXRuntime -> onnxruntime_cxx_inline.h 中的API:

// include/onnxruntime/core/session/onnxruntime_cxx_inline.h inline Session::Session(Env& env, const ORTCHAR_T* model_path, const SessionOptions& options) {   ThrowOnError(GetApi().CreateSession(env, model_path, options, &p_)); }

GetApi() 是在 onnxruntime_cxx_api.h 中定义的:

// include/onnxruntime/core/session/onnxruntime_cxx_api.h  // This returns a reference to the OrtApi interface in use inline const OrtApi& GetApi() { return *Global<void>::api_; }  // 其中 Global 的定义如下: template <typename T> struct Global {   static const OrtApi* api_; };

这里面主要定义了静态常量指针OrtApi*OrtApi是在 onnxruntime_c_api.h 中定义的:

// include/onnxruntime/core/session/onnxruntime_c_api.h  // All C API functions are defined inside this structure as pointers to functions. // Call OrtApiBase::GetApi to get a pointer to it struct OrtApi; typedef struct OrtApi OrtApi;  struct OrtApi{   ...   // 以 CreateSession 为例:   ORT_API2_STATUS(CreateSession, _In_ const OrtEnv* env, _In_ const ORTCHAR_T* model_path,                   _In_ const OrtSessionOptions* options, _Outptr_ OrtSession** out);    // 展开ORT_API2_STATUS宏:   // _Check_return_ _Ret_maybenull_ OrtStatusPtr(ORT_API_CALL* CreateSession)(const OrtEnv* env,    //                                                                          const char* model_path,    //                                                                          const OrtSessionOptions* options,    //                                                                          OrtSession** out) NO_EXCEPTION ORT_MUST_USE_RESULT;      ... }

相应地,在 onnxruntime_c_api.cc 文件中定义了 CreateSesssion 的实现:

// onnxruntime/core/session/onnxruntime_c_api.cc  ORT_API_STATUS_IMPL(OrtApis::CreateSession, _In_ const OrtEnv* env, _In_ const ORTCHAR_T* model_path,                     _In_ const OrtSessionOptions* options, _Outptr_ OrtSession** out) {   API_IMPL_BEGIN   std::unique_ptr<onnxruntime::InferenceSession> sess;   OrtStatus* status = nullptr;   *out = nullptr;    ORT_TRY {     ORT_API_RETURN_IF_ERROR(CreateSessionAndLoadModel(options, env, model_path, nullptr, 0, sess));     ORT_API_RETURN_IF_ERROR(InitializeSession(options, sess));      *out = reinterpret_cast<OrtSession*>(sess.release());   }   ORT_CATCH(const std::exception& e) {     ORT_HANDLE_EXCEPTION([&]() {       status = OrtApis::CreateStatus(ORT_FAIL, e.what());     });   }    return status;   API_IMPL_END }

到此,我们已经定位到CreateSession的具体实现内容,可以发现它主要由两个部分组成:CreateSessionAndLoadModelInitializeSession,接下来分析这两个函数。

CreateSessionAndLoadModel 的名字就可以看出,这个函数主要负责创建 Session,以及加载模型:

// onnxruntime/core/session/onnxruntime_c_api.cc  // provider either model_path, or modal_data + model_data_length. // 也就是说,共有两种方式用来读取模型:一种是根据ONNX模型路径;另一种时从模型数据缓冲(Model data buffer)中读取,并且需要指定模型大小(Model data buffer size) static ORT_STATUS_PTR CreateSessionAndLoadModel(_In_ const OrtSessionOptions* options,                                                 _In_ const OrtEnv* env,                                                 _In_opt_z_ const ORTCHAR_T* model_path,                                                 _In_opt_ const void* model_data,                                                 size_t model_data_length,                                                 std::unique_ptr<onnxruntime::InferenceSession>& sess) {   // quick check here to decide load path. InferenceSession will provide error message for invalid values.   const Env& os_env = Env::Default();  // OS environment (注意:OS environment != ORT environment)   bool load_config_from_model =       os_env.GetEnvironmentVar(inference_session_utils::kOrtLoadConfigFromModelEnvVar) == "1";      // 创建 InferenceSession   if (load_config_from_model) {     if (model_path != nullptr) {       sess = std::make_unique<onnxruntime::InferenceSession>(           options == nullptr ? onnxruntime::SessionOptions() : options->value,           env->GetEnvironment(),           model_path);     } else {       sess = std::make_unique<onnxruntime::InferenceSession>(           options == nullptr ? onnxruntime::SessionOptions() : options->value,           env->GetEnvironment(),           model_data, static_cast<int>(model_data_length));     }   } else {     sess = std::make_unique<onnxruntime::InferenceSession>(         options == nullptr ? onnxruntime::SessionOptions() : options->value,         env->GetEnvironment());   }    // Add custom domains   if (options && !options->custom_op_domains_.empty()) {     ORT_API_RETURN_IF_STATUS_NOT_OK(sess->AddCustomOpDomains(options->custom_op_domains_));   }    // Finish load   if (load_config_from_model) {     ORT_API_RETURN_IF_STATUS_NOT_OK(sess->Load());   } else {     if (model_path != nullptr) {       ORT_API_RETURN_IF_STATUS_NOT_OK(sess->Load(model_path));     } else {       ORT_API_RETURN_IF_STATUS_NOT_OK(sess->Load(model_data, static_cast<int>(model_data_length)));     }   }    return nullptr; }

接下来深入到sess->load() 中,这里面经历了多层重载函数,最终目标是为InferenceSession的成员变量model_(ClassType: std::shared_ptronnxruntime::Model)赋值:

// onnxruntime/core/session/onnxruntime_c_api.cc  common::Status InferenceSession::Load(const std::string& model_uri) {   std::string model_type = session_options_.config_options.GetConfigOrDefault(kOrtSessionOptionsConfigLoadModelFormat, "");   bool has_explicit_type = !model_type.empty();      // 判断是否为 ORT 类型的 Model   if ((has_explicit_type && model_type == "ORT") ||       (!has_explicit_type && fbs::utils::IsOrtFormatModel(model_uri))) {     return LoadOrtModel(model_uri);   }    if (is_model_proto_parsed_) {     return ORT_MAKE_STATUS(ONNXRUNTIME, FAIL,                            "ModelProto corresponding to the model to be loaded has already been parsed. "                            "Invoke Load().");   }    return Load<char>(model_uri); }  template <typename T> common::Status InferenceSession::Load(const std::basic_string<T>& model_uri) {   model_location_ = ToWideString(model_uri);   // 这里定义了一个 lambda 函数   auto loader = [this](std::shared_ptr<onnxruntime::Model>& model) {     LoadInterOp(model_location_, interop_domains_, [&](const char* msg) { LOGS(*session_logger_, WARNING) << msg; });     for (const auto& domain : interop_domains_) {       ORT_RETURN_IF_ERROR(AddCustomOpDomains({domain.get()}));     }     return onnxruntime::Model::Load(model_location_, model, HasLocalSchema() ? &custom_schema_registries_ : nullptr,                                     *session_logger_);   };    common::Status st = Load(loader, "model_loading_uri");    return Status::OK(); }  common::Status InferenceSession::Load(std::function<common::Status(std::shared_ptr<Model>&)> loader,                                       const std::string& event_name) {   std::lock_guard<onnxruntime::OrtMutex> l(session_mutex_);   // 关键代码   std::shared_ptr<onnxruntime::Model> p_tmp_model;   status = loader(p_tmp_model);   model_ = p_tmp_model;   status = DoPostLoadProcessing(*model_);      is_model_loaded_ = true;   return status; }

需要注意的是,onnxruntime::Model 不同于 onnxruntime::Graph,Graph 只是 Model 的一个成员变量,Model 中还包含其它基础信息,比如 version、domain、author 和 license 等内容。

在创建完 InferenceSession 后,需要进行初始化操作(InitializeSession):

// onnxruntime/core/session/onnxruntime_c_api.cc  static ORT_STATUS_PTR InitializeSession(_In_ const OrtSessionOptions* options,                                         _In_ std::unique_ptr<::onnxruntime::InferenceSession>& sess,                                         _Inout_opt_ OrtPrepackedWeightsContainer* prepacked_weights_container = nullptr) {   // 创建 Providers   std::vector<std::unique_ptr<IExecutionProvider>> provider_list;   if (options) {     for (auto& factory : options->provider_factories) {       auto provider = factory->CreateProvider();       provider_list.push_back(std::move(provider));     }   }    // 注册 Providers 到 InferenceSession 中   for (auto& provider : provider_list) {     if (provider) {       ORT_API_RETURN_IF_STATUS_NOT_OK(sess->RegisterExecutionProvider(std::move(provider)));     }   }    if (prepacked_weights_container != nullptr) {     ORT_API_RETURN_IF_STATUS_NOT_OK(sess->AddPrePackedWeightsContainer(         reinterpret_cast<PrepackedWeightsContainer*>(prepacked_weights_container)));   }      // 初始化 InferenceSession   ORT_API_RETURN_IF_STATUS_NOT_OK(sess->Initialize());    return nullptr; }

接下来,深入到 InferenceSession 的Initialize() 函数中,这个函数水很深,需要分为几个小的模块来分析。

// onnxruntime/core/session/inference_session.cc  common::Status InferenceSession::Initialize() {   ...    bool have_cpu_ep = false;      // 这里使用 {} 可以提前释放 session_mutex_,不必等到退出Initialize函数才释放,可提升效率   {        std::lock_guard<onnxruntime::OrtMutex> initial_guard(session_mutex_);     // 判断模型是否已被加载     if (!is_model_loaded_) {           LOGS(*session_logger_, ERROR) << "Model was not loaded";       return common::Status(common::ONNXRUNTIME, common::FAIL, "Model was not loaded.");     }      if (is_inited_) {  // 判断是否已经初始化,如果已经初始化就可以直接退出Initialize函数了       LOGS(*session_logger_, INFO) << "Session has already been initialized.";       return common::Status::OK();     }          // 判断是否已经设置 CPU EP 来兜底,如果忘记设置,后面会自动添加     have_cpu_ep = execution_providers_.Get(onnxruntime::kCpuExecutionProvider) != nullptr;   }    if (!have_cpu_ep) {     LOGS(*session_logger_, INFO) << "Adding default CPU execution provider.";     CPUExecutionProviderInfo epi{session_options_.enable_cpu_mem_arena};     auto p_cpu_exec_provider = std::make_unique<CPUExecutionProvider>(epi);     ORT_RETURN_IF_ERROR_SESSIONID_(RegisterExecutionProvider(std::move(p_cpu_exec_provider)));   }   ... }

以上代码确保了 EPs(复数,多个EP,hhh) 已被正常设置(主要是CPU已经被用作兜底),接下来从 Ort 环境中读取共享的分配器(shared allocators),并更新 EPs:

// onnxruntime/core/session/inference_session.cc  common::Status InferenceSession::Initialize() {   ...    std::string use_env_allocators = session_options_.config_options.GetConfigOrDefault(kOrtSessionOptionsConfigUseEnvAllocators,                                                                                       "0");   if (use_env_allocators == "1") {     LOGS(*session_logger_, INFO) << "This session will use the allocator registered with the environment.";     UpdateProvidersWithSharedAllocators();    // 更新 EPs   }    ...

接下来需要设定 SessionState,需要注意:SessionState 只能被 InferenceSession 修改,

// onnxruntime/core/session/inference_session.cc  common::Status InferenceSession::Initialize() {   ...    session_state_ = std::make_unique<SessionState>(       model_->MainGraph(),       execution_providers_,       session_options_.enable_mem_pattern && session_options_.execution_mode == ExecutionMode::ORT_SEQUENTIAL,       GetIntraOpThreadPoolToUse(),       GetInterOpThreadPoolToUse(),       data_transfer_mgr_,       *session_logger_,       session_profiler_,       session_options_.use_deterministic_compute,       session_options_.enable_mem_reuse,       prepacked_weights_container_);      ... }

接下来从EPs实例中收集内核注册表(kernel registries),内核注册表分为两类:

  1. Custom execution provider type specific kernel registries. 》》 比如CUDA EP
  2. Common execution provider type specific kernel registries. 》》 比如CPU EP

这两类注册表的优先级并不相同,前者要高于后者。

// onnxruntime/core/session/inference_session.cc  common::Status InferenceSession::Initialize() {   ...    ORT_RETURN_IF_ERROR_SESSIONID_(kernel_registry_manager_.RegisterKernels(execution_providers_));      ... }

在 KernelRegistryManager 中注册完注册表之后,开始执行非常重要的图优化,以及分割子图:

// onnxruntime/core/session/inference_session.cc  common::Status InferenceSession::Initialize() {   ...    // add predefined transformers   // 添加预先定义的变换   ORT_RETURN_IF_ERROR_SESSIONID_(AddPredefinedTransformers(graph_transformation_mgr_,                                                             session_options_.graph_optimization_level,                                                             saving_runtime_optimizations));    // apply any transformations to the main graph and any subgraphs   // 在主图和子图上执行所有的优化Pass   ORT_RETURN_IF_ERROR_SESSIONID_(TransformGraph(graph, graph_transformation_mgr_,                                                 execution_providers_, kernel_registry_manager_,                                                 insert_cast_transformer_,                                                 *session_state_,                                                 saving_ort_format));    // now that all the transforms are done, call Resolve on the main graph. this will recurse into the subgraphs.   // 所有的图变换都已经执行完毕,然后开始递归分割子图   ORT_RETURN_IF_ERROR_SESSIONID_(graph.Resolve());    // Update temporary copies of metadata, input- and output definitions to the same state as the resolved graph   ORT_RETURN_IF_ERROR_SESSIONID_(SaveModelMetadata(*model_));    ... }

分割子图之后,还有一些结尾工作:

// onnxruntime/core/session/inference_session.cc  common::Status InferenceSession::Initialize() {   ...    ORT_RETURN_IF_ERROR_SESSIONID_(       session_state_->FinalizeSessionState(model_location_, kernel_registry_manager_,                                             session_options_,                                             serialized_session_state,                                             // need to keep the initializers if saving the optimized model                                             !saving_model,                                             saving_ort_format));      // Resolve memory pattern flags of the main graph and subgraph session states   ResolveMemoryPatternFlags(*session_state_);    // 在 session 创建完成之后,分别调用各个EP的OnSessionInitializationEnd方法,这一步主要为EP提供一个机会,进行选择性地同步或者清理临时资源   // 从而减少内存占用,确保第一次运行时足够快   if (status.IsOK()) {     for (auto& xp : execution_providers_) {       auto end_status = xp->OnSessionInitializationEnd();       if (status.IsOK()) {         status = end_status;       }     }   }      return status; }

让模型 Run

通过上一个阶段,已经成功构造出 NanoDet 对象,接下来需要输入图像,并由 NanoDet 来执行:

//  std::vector<types::BoxF> detected_boxes; cv::Mat img_bgr = cv::imread(test_img_path); nanodet->detect(img_bgr, detected_boxes);

detect 函数内部:

void NanoDet::detect(const cv::Mat &mat, std::vector<types::BoxF> &detected_boxes,                      float score_threshold, float iou_threshold,                      unsigned int topk, unsigned int nms_type) {     if (mat.empty()) return;     auto img_height = static_cast<float>(mat.rows);     auto img_width = static_cast<float>(mat.cols);     const int target_height = (int) input_node_dims.at(2);     const int target_width = (int) input_node_dims.at(3);      // 0. resize & unscale     cv::Mat mat_rs;     NanoScaleParams scale_params;     this->resize_unscale(mat, mat_rs, target_height, target_width, scale_params);      // 1. make input tensor     Ort::Value input_tensor = this->transform(mat_rs);          // 2. inference scores & boxes.     auto output_tensors = ort_session->Run(         Ort::RunOptions{nullptr}, input_node_names.data(),         &input_tensor, 1, output_node_names.data(), num_outputs     );     // 3. rescale & exclude.     std::vector<types::BoxF> bbox_collection;     this->generate_bboxes(scale_params, bbox_collection, output_tensors, score_threshold, img_height, img_width);     // 4. hard|blend|offset nms with topk.     this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type); }

其中,第 0 和 1 步是模型输入的预处理,这里不再深入介绍,想要了解可参考源码。接下来重点对第 2 步的ort_seesion->Run() 进行深入剖析。

// include/onnxruntime/core/session/onnxruntime_cxx_inline.h  inline std::vector<Value> Session::Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count,                                        const char* const* output_names, size_t output_names_count) {   std::vector<Ort::Value> output_values;   for (size_t i = 0; i < output_names_count; i++)     output_values.emplace_back(nullptr);   Run(run_options, input_names, input_values, input_count, output_names, output_values.data(), output_names_count);   return output_values; }  inline void Session::Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count,                          const char* const* output_names, Value* output_values, size_t output_count) {   static_assert(sizeof(Value) == sizeof(OrtValue*), "Value is really just an array of OrtValue* in memory, so we can reinterpret_cast safely");   auto ort_input_values = reinterpret_cast<const OrtValue**>(const_cast<Value*>(input_values));   auto ort_output_values = reinterpret_cast<OrtValue**>(output_values);   ThrowOnError(GetApi().Run(p_, run_options, input_names, ort_input_values, input_count, output_names, output_count, ort_output_values)); }

又到了熟悉的环节,GetApi()可参考上一章节的内容,直接到 onnxruntime_c_api.cc 中查看 Run 函数对应的实现:

// onnxruntime/core/session/onnxruntime_c_api.cc  ORT_API_STATUS_IMPL(OrtApis::Run, _Inout_ OrtSession* sess, _In_opt_ const OrtRunOptions* run_options,                     _In_reads_(input_len) const char* const* input_names,                     _In_reads_(input_len) const OrtValue* const* input, size_t input_len,                     _In_reads_(output_names_len) const char* const* output_names1, size_t output_names_len,                     _Inout_updates_all_(output_names_len) OrtValue** output) {   API_IMPL_BEGIN   // 获取 inferencesession   auto session = reinterpret_cast<::onnxruntime::InferenceSession*>(sess);   const int queue_id = 0;      // 模型输入:feed_names & feeds   std::vector<std::string> feed_names(input_len);   std::vector<OrtValue> feeds(input_len);    for (size_t i = 0; i != input_len; ++i) {     if (input_names[i] == nullptr || input_names[i][0] == '\0') {       return OrtApis::CreateStatus(ORT_INVALID_ARGUMENT, "input name cannot be empty");     }      feed_names[i] = input_names[i];     auto& ort_value = feeds[i] = *reinterpret_cast<const ::OrtValue*>(input[i]);      if (ort_value.Fence()) ort_value.Fence()->BeforeUsingAsInput(onnxruntime::kCpuExecutionProvider, queue_id);   }    // 模型输出:output_names & fetches   std::vector<std::string> output_names(output_names_len);   for (size_t i = 0; i != output_names_len; ++i) {     if (output_names1[i] == nullptr || output_names1[i][0] == '\0') {       return OrtApis::CreateStatus(ORT_INVALID_ARGUMENT, "output name cannot be empty");     }     output_names[i] = output_names1[i];   }    std::vector<OrtValue> fetches(output_names_len);   for (size_t i = 0; i != output_names_len; ++i) {     if (output[i] != nullptr) {       ::OrtValue& value = *(output[i]);       if (value.Fence())         value.Fence()->BeforeUsingAsOutput(onnxruntime::kCpuExecutionProvider, queue_id);       fetches[i] = value;     }   }      // 调用 InferenceSession 的 Run 函数,执行推理   Status status;   if (run_options == nullptr) {     OrtRunOptions op;     status = session->Run(op, feed_names, feeds, output_names, &fetches, nullptr);   } else {     status = session->Run(*run_options, feed_names, feeds, output_names, &fetches, nullptr);   }      // Run 结束后,将 fetches 中的内容取出放到 output 中   if (!status.IsOK())     return ToOrtStatus(status);   for (size_t i = 0; i != output_names_len; ++i) {     ::OrtValue& value = fetches[i];     if (value.Fence())       value.Fence()->BeforeUsingAsInput(onnxruntime::kCpuExecutionProvider, queue_id);     if (output[i] == nullptr) {       output[i] = new OrtValue(value);     }   }   return nullptr;   API_IMPL_END }

进入到InferenceSession::Run 的内部:

Status InferenceSession::Run(const RunOptions& run_options,                              const std::vector<std::string>& feed_names, const std::vector<OrtValue>& feeds,                              const std::vector<std::string>& output_names, std::vector<OrtValue>* p_fetches,                              const std::vector<OrtDevice>* p_fetches_device_info) {    std::vector<IExecutionProvider*> exec_providers_to_stop;   exec_providers_to_stop.reserve(execution_providers_.NumProviders());    std::vector<AllocatorPtr> arenas_to_shrink;    // 验证输入输出,并由 FeedsFetchesManager 进行管理   ORT_RETURN_IF_ERROR_SESSIONID_(ValidateInputs(feed_names, feeds));   ORT_RETURN_IF_ERROR_SESSIONID_(ValidateOutputs(output_names, p_fetches));   FeedsFetchesInfo info(feed_names, output_names, session_state_->GetOrtValueNameIdxMap());   FeedsFetchesManager feeds_fetches_manager{std::move(info)};      // current_num_runs_ 的类型是:std::atomic<int>,表示并行运行 EP 的数量   ++current_num_runs_;       // info all execution providers InferenceSession:Run started   for (auto& xp : execution_providers_) {     // call OnRunStart and add to exec_providers_to_stop if successful     auto start_func = [&xp, &exec_providers_to_stop]() {       auto status = xp->OnRunStart();       if (status.IsOK())         exec_providers_to_stop.push_back(xp.get());        return status;     };      ORT_CHECK_AND_SET_RETVAL(start_func());   }      if (run_options.only_execute_path_to_fetches) {     session_state_->UpdateToBeExecutedNodes(feeds_fetches_manager.GetFeedsFetchesInfo().fetches_mlvalue_idxs);   }    session_state_->IncrementGraphExecutionCounter();      // execute the graph   ORT_CHECK_AND_SET_RETVAL(utils::ExecuteGraph(*session_state_, feeds_fetches_manager, feeds, *p_fetches,                                                 session_options_.execution_mode, run_options.terminate, run_logger,                                                 run_options.only_execute_path_to_fetches));    // info all execution providers InferenceSession:Run ended   for (auto* xp : exec_providers_to_stop) {     auto status = xp->OnRunEnd(/*sync_stream*/ true);     ORT_CHECK_AND_SET_RETVAL(status);   }      --current_num_runs_; }

至此,模型已经完成推理,接下来只需处理输出内容即可,对应 nanodet->detect() 函数的 3、4 部分。

总结

本文主要介绍了InferenceSession的构造和初始化,以及模型的推理过程,可以发现其中还是蛮复杂的。由于对ONNXRuntime的源码仍然了解有限,有许多重要的部分被略过,打算接下来分别针对突破。